Plasma-Mediated Transfection of RPE
نویسندگان
چکیده
A major obstacle in applying gene therapy to clinical practice is the lack of efficient and safe gene delivery techniques. Viral delivery has encountered a number of serious problems including immunological reactions and malignancy. Non-viral delivery methods (liposomes, sonoporation and electroporation) have either low efficiency invivo or produce severe collateral damage to ocular tissues. We discovered that tensile stress greatly increases the susceptibility of cellular membranes to electroporation. For synchronous application of electric field and mechanical stress, both are generated by the electric discharge itself. A pressure wave is produced by rapid vaporization of the medium. To prevent termination of electric current by the vapor cavity it is ionized thus restoring its electric conductivity. For in-vivo experiments with rabbits a plasmid DNA was injected into the subretinal space, and RPE was treated trans-sclerally with an array of microelectodes placed outside the eye. Application of 250-300V and 100–200 μs biphasic pulses via a microelectrode array resulted in efficient transfection of RPE without visible damage to the retina. Gene expression was quantified and monitored using bioluminescence (luciferase) and fluorescence (GFP) imaging. Transfection efficiency of RPE with this new technique exceeded that of standard electroporation by a factor 10,000. Safe and effective non-viral DNA delivery to the mammalian retina may help to materialize the enormous potential of the ocular gene therapy. Future experiments will focus on continued characterization of the safety and efficacy of this method and evaluation of long-term transgene expression in the presence of phiC31 integrase.
منابع مشابه
O-10: Sperm Mediated Gene Transfer Using Adjuvant Preserving Fertility for Production of Transgenic Chicken Expressing
Background: Low uptake of exogenous DNA by sperm and reduced number of fertilized oocyte by transfected sperm are the major obstacles for progression of sperm mediated gene transfer. Therefore, the modification of sperm mediated gene transfer procedure needs to be required. The purpose of this study was to evaluate the efficiency of FuGene 6 compare to lipofection in transfection medium for int...
متن کاملRecombinant adeno-associated virus-, polyethylenimine/plasmid- and lipofectamine/carboxyfluorescein-labeled small interfering RNA-based transfection in retinal pigment epithelial cells with ultrasound and/or SonoVue.
The present study was conducted to investigate the efficacy and safety of ultrasound (US)‑mediated transfection of the type 2 recombinant adeno‑associated virus (AAV) vectors encoding the enhanced green fluorescent protein (EGFP) gene (rAAV), polyethylenimine (PEI)/plasmid EGFP‑N1 (pDNA) or lipofectamine (L)/carboxyfluorescein (FAM)‑labeled small interfering RNA (siRNA) in the human ARPE‑19 ret...
متن کاملDeveloping a Novel Gene-Delivery Vector System Using the Recombinant Fusion Protein of Pseudomonas Exotoxin A and Hyperthermophilic Archaeal Histone HPhA
Non-viral gene delivery system with many advantages has a great potential for the future of gene therapy. One inherent obstacle of such approach is the uptake by endocytosis into vesicular compartments. Receptor-mediated gene delivery method holds promise to overcome this obstacle. In this study, we developed a receptor-mediated gene delivery system based on a combination of the Pseudomonas exo...
متن کاملEzrin Promotes Morphogenesis of Apical Microvilli and Basal Infoldings in Retinal Pigment Epithelium
Ezrin, a member of the ezrin/radixin/moesin (ERM) family, localizes to microvilli of epithelia in vivo, where it bridges actin filaments and plasma membrane proteins. Here, we demonstrate two specific morphogenetic roles of ezrin in the retinal pigment epithelium (RPE), i.e., the formation of very long apical microvilli and of elaborate basal infoldings typical of these cells, and characterize ...
متن کاملGene transfer to rabbit retina with electron avalanche transfection.
PURPOSE Nonviral gene therapy represents a promising treatment for retinal diseases, given clinically acceptable methods for efficient gene transfer. Electroporation is widely used for transfection, but causes significant collateral damage and a high rate of cell death, especially in applications in situ. This study was conducted in the interest of developing efficient and less toxic forms of g...
متن کامل